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Lipid Absorption and Metabolism
by A. Kuksis*, N. A. Shaikh*, and A. G. D. Hoffman*

Metabolic processes occurring within the mucosal cell are critical in determining results of interactions
between environmental agents and the alimentary tract. The absorption, metaboUsm, and transport of
lAds affects most those agents which are lipid soluble. The understanding of the process involved in lipid
absorption and transport is therefore important for both appreciation of the mechanism of uptake of these
twdns and for an effective interference with it. Most of the detailed mechanisms of lipid absorption and
trnport have been proposed from in vitro studies with soluble cell-free systems. The present review
integrates these results with recent in vivo and in vitro findings with intact animal tissues and isolated
mucesal cells. While there is much general agreement occasional startling differences are also observed,
which may have a bearing on the mechanism of normal fat absorption and on the understanding of the
transport of the fat-soluble toxins across the mucosal villus cell.

Introduction
The absorption and metabolism of lipids by the

intestine is of great interest to environmental tox-
icology because the intestinal mucosa provides a
large and intimate contact area between animal tis-
sues and environment and because many natural and
industrial toxins are lipid soluble and are carried into
the body along with dietary fat (1, 2). In this connec-
tion of special concern is the passive nature of the
absorption process, the transmembrane transport of
partially degraded lipid esters in the form of surface
active materials, and the rapid resynthesis and clear-
ance of dietary fat from the absorbing cells in the
fonn of incompletely defined structures, which can
accommodate a variety of foreign substances.
The subject oflipid absorption and metabolism has

been extensively reviewed (3-11), including the
physical chemistry of the process (8, 9) and possible
metabolic control points (5, 6, 10). The present dis-
cussion briefly summarizes the current understand-
ingof the field and integrates it with some new in vivo
and in vitro data gathered with intact cells, which
support some of the earlier concepts and dispute
others.
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Overall Process
Figure 1 summarizes the major metabolic trans-

formations of the dietary lipids based on both in vitro
and in vivo results. This schematic depicts the entry
of dietary fat into the villus cell in the form of free
fatty acids, 2-monoacylglycerols, and free glycerol,
but 1(3)-monoacylglycerols and lysophosphatidyl-
choline are also known to enter the cell intact. This
entry is facilitated by bile salts, which, however, do
not play any further role in the fat absorption pro-
cess. The long-chain fatty acids are believed to enter
a common pool of fatty acyl CoA esters, which are
utilized for both neutral and phosphoglycerol acyla-
tion, but this may need correction. Figure 1 also
shows a single pool of diacylglycerols, and this re-
quires qualification. Clearly, the diacylglycerols
arising from the phosphatidic acid pathway are all of
the sn-1,2-type and they proceed to the
triacylglycerols via acylation of the sn-3-position.
These diacylglycerols also give rise to the
glycerophospholipids. The latter pathway is respon-
sible for the entire resynthesis of dietary fat in the
absence of 2-mono-acylglycerols, e.g., free fatty
acid or simple fatty ester feeding. The sn-1,2-
diacylglycerols may also be formed by acylation of
sn-l-monoacylglycerol phosphate arising via the
monoacylglycerol kinase (12), which, however, does
not phosphorylate the diacylglycerols. In micro-
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somal preparations 2-monoacylglycerols give rise to
sn-1,2-diacylglycerols by direct acylation, but in in-
tact cells both sn-1,2- and sn-2,3-diacylglycerols are
fonned in nearly equal amounts. Potential inhibitory
effects of monoacylglycerols upon the activity of the
phosphatidic acid pathway have been suggested, but
they may have no metabolic significance. A single
pool is also being shown for the triacylglycerols,
although the acylation of diacylglycerols may take
place at different subcellular sites. There is no evi-
dence, however, for a subcellular segregation of the
triacylglycerol pools. Thus triacylglycerols arising
from both the phosphatidic acid and the 2-
monoacylglycerol pathways are incorporated to-
gether into the chylomicrons along with free choles-
terol, phosphatidylcholine, and lipoproteins, as the
final step in the absorption of the dietary fat. The
chylomicrons contain definite ratios of triacyl-
glycerol and phosphatidylcholine, depending on the
particle size. It has been shown that the amounts of
phosphatidylcholine and free cholesterol recovered
from the lymph chylomicrons of dogs and rats is just
sufficient to form a monolayer coating a sphere of
triacylglycerol-core particles (13, 14). Although
there is a general agreement on the structure of the
chylomicrons, there would appear to persist some
reluctance to recognize the essentiality of all the
chylomicron components for both the packaging of
the triacylglycerols and for the release of the parti-
cles from the mucosal cells.

Enantiomeric Nature of
Diacylglycerol Intermediates
Fasting intestinal mucosa contains exclusively

sn-1,2-diacylglycerols (15). This finding can be
rationalized on the basis of the known products of
the phosphatidic acid pathway and/or a back-
reaction from the CDP-choline pathway of phos-
phatidyicholine biosynthesis (16). The latter possi-
bility is likely in view of the high content of the
polyunsaturated fatty acids in the diacylglycerols of
the fasting mucosa. The diacylglycerols originating
from free fatty acid feeding are also of the sn-1,2-
type, and clearly the products of phosphatidic acid
synthesis (15).
The reacylation of 2-monoacylglycerols by the

intestinal mucosa yields two products. Cell-free
systems from intestine generate sn- 1,2-
diacylglycerols by a stereospecific acylation of the
2-monoacylglycerols (17, 18). In contrast, studies
with everted sacs of rat intestinal mucosa have
shown (19, 20) that both sn-1,2- and sn-2,3-
diacylglycerols are major products of the acylation
of2-monoacylglycerols. Figure 2 shows a schematic
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FiGuRE 1. Simplified schematic of transformation of main prod-
ucts of luminal hydrolysis of dietary fat during absorption and
resynthesis into chylomicrons by an intestinal villus cell.

of these transformations. Stereospecific analyses of
the X-1,2-diacylglycerols from glycerol-labeled
2-monoacylglycerols showed that the sn-1 ,2-isomers
(45-55%) were slightly in excess of the sn-2,3-
isomers (34-45%), with the X-1,3-diacyglycerols ac-
counting for the rest (5-10%) ofthe radioactivity (20).
During triacylglycerol feeding both sn-1,2- and sn-
2,3-diacylglycerols were recovered in significant
amounts from the intestinal mucosal scrapings (15).
The composition of the sn-2,3-diacylgylcerols corre-
sponded to that with the exogenous fatty acids but
the sn-1,2-diacylglycerols clearly contained both ex-
ogenous and endogenous fatty acids. Comparable
results were obtained with isolated mucosal cells
(21). Stereospecific analysis of the diacylglycerols
formed from 2-monoacylglycerols and free fatty
acids showed that sn-1,2-diacylglycerols (62-70%)
were the major and the sn-2,3-diacyglycerols
(30-38%) the minor intermediates. However, the
proportion of the contribution of the phosphatidic
acid pathway to the generation of the sn-1,2-isomers
was not determined in the latter instance. The prob-
ability that the triacylglycerol resynthesis by the
monoacylglycerol pathway in intact cells proceeds
via both enantiomers of the intermediate
diacylglycerols finds indirect confirmation in the op-
tical rotatory dispersion studies of Akesson et al.
(22). With synthetic triacylglycerol feeding, chyle
triacylglycerols were found to be essentially
racemic. Most of the triacylglycerol was formed
from 2-monoacylglycerols, but the nature of the in-
termediate diacylglycerols was not established. If
the triacylglycerol resynthesis had taken place ex-
clusively via the sn-1,2-diacylglycerol inter-
mediates, optically active products should have been
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FIGURE 2. Overall transformation of 2-monoacylglycerols into

triacylglycerols by intact intestinal villus cells including the
intermediate formation of rac-1,2-diacylglycerols.

detected. In connection with the stereochemical
course of the triacylglycerol resynthesis and clear-
ance by the intestinal mucosa may be mentioned the
apparent stereospecificity of digestion and absorp-
tion of rac-1,2-di-O-oleoyl-3-S-oleoyl-3-thioglycerol
(23). The proportions of triacyl-l-thio-sn-glyceroll
triacyl-3-thio-sn-glycerol were 63/37 and 78/22 in two
experiments. The finding is consistent with a prefer-
ential utilization of 2-acyl-i-thio-sn-glycerol versus
2-acyl-3-thio-sn-glycerol. If position sn-I was acy-
lated first, as claimed by Johnston et al. (17), the
difference might reflect the different functional
groups in this position. A differential utilization of
the two enantiomers of thioglycerols was also con-
sidered.
This apparent discrepancy between the in vivo and

in vitro acylation of 2-monoacylglycerols can be rec-
onciled if it is assumed that the monoacylglycerol
sn-3-acyltransferase has been lost or inactivated
during the preparation of the microsomes or
homogenates of the intestinal mucosa (19). This pos-
sibility is supported by the observation that not only
are not the sn-2,3-diacylglycerols formed, but that
there is essentially no acylation of the sn-1,2-diacyl-
glycerols to the triacylglycerols. Diacylglycerols are
the sole or at least the major products of 2-mono-
acylglycerol acylation in cell free systems prepared
from rat intestinal mucosa (17, 18). In contrast,
diacylglycerols make up only a minor proportion of
the total product of acylglycerol resynthesis in intact
cells, with the triacylglycerols accounting for over
90% of the total (21, 24, 25). The possibility of loss of
a general sn-3-acyltransferase, however, appears
unlikely in view of experiments with added diacyl-

glycerols. Enantiomeric diacylglycerols added to
microsomes of intestinal mucosa are poorly acylated
to triacylglycerols, but the sn-1,2-isomers are es-
terified more readily than the sn-2,3-isomers (26).
Figure 3 shows a schematic of the direct transforma-
tion of both sn-1,2- and sn-2,3-diacylglycerols into
triacylglycerols. The diacylglycerol acyltransferase,
if a single enzyme, showed a definite preference
(4-fold) for the acylation of the sn-1,2-isomers. It is
therefore necessary to assume that the sn-3-mono-
acylglycerol acyltransferase was preferentially lost
during the preparation of the cell free systems. An
alternate possibility is the stereospecific acylation
of the 2-monoacylglycerols via the sn-1,2-isomers
at low levels of substrate concentration (cell-free
systems) and a racemic reesterification of 2-mono-
acrlglycerols and racemic diacylglycerols at high
substrate concentrations (intact cells, mucosal
scrapings, and everted sacs of intestinal mucosa, and
intact animals).
We have recently developed a new method of

stereospecific analysis of enantiomeric diacylgly-
cerols (27). It is based on the synthesis of rac-
phosphatidylcholines and a stereospecific stepwise
release of the sn-1,2- and sn-2,3-diacylglycerols by
phospholipase c. This technique allows an easy
identification of the molecular species of diacyl-
glycerols in each enantiomer class as well as a sub-
traction of enantiomer classes to identify separate
contributions as the monoacylglycerol and phos-
phatidic acid pathways.

Segregation of Diacylglycerol
Pools
Figure 3 also indicates that added sn-1,2-diacyl-

glycerols are converted into both triacylglycerols
and phosphatidylchoines at about the same rate. The
sn-2,3-diacylglycerols are converted only into
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FIGURE 3. Utilization of added rac-1,2-diacylglycerols by micro-
somes of rat intestinal villus cells. Ri - R4, different fatty acids
attached to glycerol backbone. PC, phosphorylcholine.
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FIGuRE 4. GLC pattems of diacylglycerols from intestinal mucosa of fasting and fat-fed rats (15): (A)
sn-1,2-diacylglycerols of rat liver phosphatidylcholine (reference standards); (B) sn-1,2-
diacylglycerols from rats fed free fatty acids; (C) sn-1,2- and sn-2,3-diacylglycerols from rats fed
triacylglycerols; (D) sn-1,2-diacylglycerols from fasted rats. GLC conditions: 3% Silar 5CP (a
cyanopropylphenylsiloxane polymer) on Gas Chrom Q (100-120 mesh) packed into a glass U-tube
(180 cm x 0.3 cm) and operated at 265°C (isothermally) using a F and M Biomedical Gas Chromato-
gmph equipped with a flame ionization detector. Sample: 1 ltl of 1% solution of trimethylsilyl ethers
of diacylglycerols in silylation mixture.

triacylglycerols. Provided sufficient choline were
available the sn-1,2-diacylglycerols, arising either
via the phosphatidic acid or the monoacylglycerol
pathway would give rise to triacylglycerols and
phosphatidylcholines in proportion to the activity of
the slowest enzyme in each pathway. The possibility
of a feed-back regulation of phospholipid synthesis
should also be considered because phosphatidyl-
choline does not normally accumulate in the cell
unless membrane biosynthesis has been specifically
stimulated (28). If both sn-1,2-and sn-2,3-
diacylglycerols were generated from the 2-
monoacylglycerols in equal amounts, the possibility
for phospholipid synthesis would be reduced by one
half.
There is evidence, however, that diacylglycerols

synthesized via the 2-monoacylglycerol pathway,
even when of the sn-i ,2-configuration, are not incor-
porated into phosphatidylcholine while the diacyl-
glycerols synthesized via the phosphatidic acid
pathway are precursors of phosphatidylcholine (17,
29). In these experiments the diacylglycerols result-
ing from the phosphatidic acid pathway were bound
to microsomes, while the diacylglycerols of the
monoacylglycerol pathway were generated from

added 2-monoacylglycerols. Controls containing
added sn-1,2-diacylglycerols were not tested. It was
suggested that the diacylglycerols arising from the
monoacylglycerol pathway are not available for
phosphatidylcholine synthesis because of physical
segregation. It is not known to what extent this con-
clusion may have been influenced by any difficulty of
substrate accessibility in such in vitro experiments.
Nevertheless, a segregation of diacylglycerol pools
or at least the acyl CoA pools is also suggested by
analysis of the molecular species of diacylglycerols
recovered from the intestinal mucosa during a-ctive
fat absorption (15, 25). It has been demonstrated (15)
that an sn-1,2-diacylglycerol pool exists which is
characterized by high proportions of 18:2 and 20:4
acids in the sn-2-position and which does not partici-
pate in triacylglycerol formation, although it could
have contributed to the biosynthesis of phos-
phatidylcholine. The diacylglycerol pool was closely
similar to that identified in fasting intestinal mucosa.
Figure 4 compares the composition of this pool to
that derived from feeding offree fatty acids alone and
to that arising from the combined operation of the
monoacylglycerol and of the phosphatidic acid
pathway. During triacylglycerol feeding both sn-1,2-
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and sn-2,3-diacylglycerols were recovered in signifi-
cant amounts from the intestinal mucosa. The com-
position of the sn-2,3-diacylglycerols corresponded
to that with the exogenous fatty acids, while the
sn-1,2-diacylglycerols clearly contained both exoge-
nous and endogenous fatty acids (15). In addition to
these sn-1,2- and sn-2,3-diacylglycerols containing
the original fatty acids in the sn-2-position there were
sn-1,2-diacylglycerols, labeled from free fatty acids,
which did not contain the acid present in the 2-
monoacylglycerol supplied in the diet, and which
therefore must have originated via the phosphatidic
acid pathway. These results may also be explained
by assuming that the fatty acyl CoA pool was
heterogeneous. There was no evidence of a
heterogeneity of the triacylglycerols arising from the
different diacylglycerol pools (25). In vivo studies
have shown that dietary fatty acids are readily incor-
porated into mucosal phospholipids and triacylgly-
cerols but that a complete equilibration is not ob-
tained (30). It is possible that the latter differences
arise from acyl exchanges on the phospholipid
molecules as well as from a dilution of the newly
synthesized phosphatidylcholine molecules by
molecules arising from reacylation of lysophos-
phatidylcholine (31). It has been estimated that the in
vivo contribution of the phosphatidic acid pathway
during absorption of long chain fatty esters of
glycerol is approximately 20%o and that it may exceed
this level when an excess of free fatty acid arises due
to loss of short chain monoacylglycerols (25). In
other instances the contribution of the phosphatidic
acid pathway may be minimal due to an excess of
monoacylglycerol because of a loss of short chain
fatty acids to the portal route. The endogenous
diacylglycerol pool which apparently did not partici-
pate in triacylglycerol synthesis was estimated at 0.5
+ 0.3 mg/g tissue (15).

Monoacylglycerol Inhibition of
Phosphatidic Acid Pathway
The high activity of the phosphatidic acid pathway

during monoacylglycerol absorption and triacylgly-
cerol biosynthesis via the monoacylglycerol path-
way is unexpected in view of the claim that mono-
acylglycerols and monoalkylglycerol ethers inhibit
the phosphatidic acid pathway in intestinal micro-
somes and adipocytes (32, 34). A direct inhibition by
monoacylglycerols of the acylation ofglycerol phos-
phate and not a competition for available acyl CoA
was shown by the demonstration that sn-3-alkyl
analog of the sn-3-monoacylglycerol inhibits the
acylation of the glycerol phosphate without becom-
ing esterified itself (33). Polheim et al. (34) have

claimed that phosphatidic acid biosynthesis be-
comes inhibited by 2-monoacylglycerols under con-
ditions where their hydrolysis is prevented, and that
this effect has a metabolic significance. Although the
reacylation of 2-monoacylglycerols in vivo (15) and
in everted sacs in vitro (20) takes place under condi-
tions of extremely limited hydrolysis, no evidence
has been obtained for an inhibition of the phos-
phatidic acid pathway. Because of the rapid reacyla-
tion of the 2-monoacylglycerols, it is extremely
unlikely that concentrations of 200-500 nmole of
monoacylglycerol per 100 mg of wet tissue would
ever be reached under normal conditions. Yet these
concentrations of the monoalkyl glycerols were nec-
essary to reduce the activity of the phosphatidic acid
pathway by 50 to 80%o (34). A complete shutdown of
the phosphatidic acid pathway, however, was not
obtained even at much higher concentrations of the
monoacyl or monoalkylglycerols. It is therefore pos-
sible that this effect represents merely a detergent
action of the surface active materials upon mem-
brane bound enzymes. A complete shutdown of the
phosphatidic acid biosynthesis may not be compati-
ble with a normal resynthesis of the cell membranes
because some of the component phospholipids
require phosphatidic acid as the precursor and all
require sn-1,2-diacylglycerols from the phosphatidic
acid pathway, especially if the sn-i ,2-diacylglycerols
generated via the monoacylglycerol pathway cannot
be utilized for this purpose. As shown below, phos-
phatidylcholine is an essential component of the
chylomicron structure and its requirements can be
met only in part by the reacylation of lysophos-
phatidylcholine, the rest must be formed de novo
(35). It is, therefore, unlikely that monoacylglycerols
exert significant inhibitory effect on the activity of
the phosphatidic acid pathway in vivo. Studies in
vivo and in everted sacs in vitro have given evidence
for an increased biosynthesis ofboth triacylglycerols
and phosphatidylcholine via the phosphatidic acid
pathway during increased activity of the 2-mono-
acylglycerol pathway (36).

Role of Phosphatidylcholine in Fat
Absorption

It has been shown that the resynthesis of
triacylglycerols and the formation ofchylomicrons is
accompanied by an incorporation of small but defi-
nite amounts of phosphatidylcholine in these lipid
particles. It has been calculated that the amount of
the phosphatidylcholine present in the chylomicrons
secreted in lymph is equivalent to a monolayer cov-
ering the surface of the spherical chylomicron parti-
cle containing all the triacylglycerols in the central
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FIGURE 5. Simplified schematic of structure of chylomicra indi-

cating presence of polar lipids, phosphatidylcholine (PC) and
cholesterol (C), in surface monolayer and neutral lipids,
triacylglycerols (TG), in interior. The apoproteins are as-

sociated with surface of particle. The amount of phosphatidyl-
choline in surface monolayer can be calculated from knowl-
edge of crosssectional area of phosphatidylcholine and
cholesterol, and from volume of triacylglycerol molecule (13).

core (13, 14). Figure 5 shows a schematic represen-
tation of such a particle for the rat. Although this
structure is now generally accepted as a good ap-
proximation of the organization of lipids in all
chylomicrons, there remains some reluctance to ac-

cept the absolute requirement of each of the compo-
nents in the formation and secretion of chylo-
microns.
Recent studies, however, indicate that a lack of

choline, lysophophatidylcholine, or phosphatidyl-
choline may impair the clearance of fat from the
intestinal mucosa (37, 38) or from isolated mucosal
cells (39). These observations are in accord with the
original claim of Frazer (40), who had noted that a

dietary supplementation with choline resulted in a

more rapid clearance of fat from the intestinal mu-

cosa of rats receiving large amounts ofcorn oil in the
diet. Using smaller amounts of fat, Tasker and Hart-
roft (41), however, were unable to confirm this.
O'Doherty et al. (37) recognized that the source of
the poor reproducibility of this observation could
have been the availability of phosphatidylcholine in
the bile, which was not controlled. This possibility

was supported by the work of Morgan (42), who had
failed to obtain a fatty gut in bile fistula rats receiving
fat emulsions containing phosphatidylcholine in the
fonn of egg lecithin. Using a 24 hr bile fistula rat and
administering a heavy fatty meal containing
monoacylglycerols, free fatty acids and bile salts in
micellar proportions but in large amounts (> 800 mg)
via a stomach tube, it was possible to induce a fatty
gut reproducibly. The fatty gut was readily cleared
by the inclusion of choline, lysophosphatidyl-
choline, or phosphatidylcholine in the meal. Fur-
thermore, the appearance of the fatty gut was as-
sociated with decreased amounts of radioactive fatty
acids in the liver and adipose tissue ofthese animals,
all of these effects being abolished by choline and its
phosphatides and not by other phospholipids in-
cluded in the meal. These observations were further
confirmed in isolated villus cells of rat intestinal mu-
cosa with essentially identical results (39, 43). These
findings in the bile fistula rats have now been con-
famed by Clark (44) and by Tso et al. (38), who
analyzed the lymph. A previous attempt with much
smaller amounts of dietary fat had failed to give
evidence of impairment (45). Obviously the intesti-
nal mucosa possesses considerable resources to
meet modest requirements of choline and phos-
phatidylcholine for chylomicron formation, e.g.,
blood, bile, food and possibly autodigestion of shed
cells. When these supplies are either eliminated or
the demand exceeds the supply as in case of high
doses of dietary fat, a fatty gut persists until the
choline or phosphatidylcholine requirement can be
satisfied. These experiments clearly suggest that the
intestinal mucosa specifically uses and requires
phosphatidylcholine for both synthesis and secretion
of chylomicrons. The absorption and clearance of
small amounts of triacylglycerols does not require
necessarily the addition of choline or lysophos-
phatidylcholine for this purpose as this requirement
can be met from endogenous sources (4547). Fur-
thermore, the size of chylomicrons can be increased
within limits to "get by" when packaging material is
in short supply as also suggested for the sparing of
the apopeptides during inhibition of protein biosyn-
thesis (5, 11).
The need for phosphatidylcholine for the effective

clearance of high loads of dietary fat may also be
implied from the electron microscopic studies of
Friedman and Cardell (48). These investigators
showed that during puromycin poisoning there was a
dramatic reduction of intracellular membrane mate-
rial within 1 hr of treatment. Since phosphatidyl-
choline is a major component of cell membranes, a
shortage of choline or lysophosphatidylcholine
could become critical especially in the rat, which has
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very limited capability of generating choline by
methylation of phosphatidylethanolamine (49).
There have been several recent reports (46, 50)

proclaiming no special requirement for phos-
phatidylcholine or choline for fat absorption in the
rat. These studies have been based on experiments
conducted during infusion of dilute micellar solu-
tions or dilute emulsions of triacylglycerols, which
would not be sufficient to bring about any significant
mass accumulation in the absorptive cell and thus
taxing its ability to package the triacylgylcerols and
secrete them as chylomicrons. Furthermore, the
lack of requirement of choline or its derivatives was
judged on the basis of various ratios of radioactive
triacylglycerol and phosphatidylcholine in the
lymph, which would not have been expected to
change regardless of whether or not choline had any
effect on the secretion of chylomicrons. In any
event, in these instances the minor amounts of
triacylglycerol mass could be packaged without re-
quiring the use of luminal choline, possibly by in-
creasing the chylomicron size. The infusion ex-
periments, however, may not be representative of
the physiological state because the continued wash-
ingofthe intestinal surface with a micellar solution of
bile salts, fatty acids and monoacylglycerols may
adversely affect the process of fat absorption. It is
possible that such perfusion experiments lead to
serious erosion of the mucosal surface especially if
initiated up to 24 hr prior to the actual experiment.

It is possible that the definition ofthe requirements
of the metabolic components for effective fat ab-
sorption can be carried even further. Thus, Van den
Berg and Hulsman (51) have claimed that fat absorp-
tion may be delayed by a lack of dietary carbo-
hydrates necessary for the synthesis of the appro-
priate molecular species of phosphatidylcholine.
Although the chylomicron phosphatidylcholine has a
fatty acid composition clearly different from that of
the diacylglycerols (30), detailed studies have not
been carried out of the corresponding sn-1,2-diacyl-
glycerol moieties of the triacylglycerols over the
course of the fat absorption. Clark et al. (52) have
provided a partial support for this suggestion by
demonstrating that essential fatty acid deficiency
affects the synthesis and/or release of chylomicron
lipid from the intestine. The possibility of impaired
biosynthesis of cell membranes in essential fatty acid
deficiency must also be considered.
The specificity for the requirement of phos-

phatidylcholine for enterocyte absorption of dietary
fat is also seen from the demonstration that the
enantiomer of natural lysophosphatidylcholine
would not support chylomicron synthesis and secre-
tion in the rat (53).

Role of Apopetides in Fat
Absorption
Some controversy has also arisen concerning the

role played by apoproteins in chylomicron formation
and secretion. Redgrave and Zilversmit (54) have
challenged the need for protein and especially f8-
apoprotein synthesis for chylomicron release origi-
nally claimed by Sabesin and Isselbacher (55) and
have proposed that the effect ofpuromycin and other
inhibitors on protein biosynthesis could have been
due to interference with a variety of transport pro-
cesses including the time of stomach emptying, and
not necessarily involving a lack of packaging mate-
rial. O'Doherty et al. (39, 56) have since shown that
mucosal villus cells prepared from rats pretreated
with puromycin fail to release chylomicrons follow-
ing isolation, while control rats release them nearly
instantaneously. Obviously the block ofrelease must
be located within the intestinal villus cell. Since
puromycin added to the cells following isolation
from untreated animals failed to inhibit either
triacylglycerol synthesis or release to a comparable
extent, it was obvious that a long-term effect, such as
protein synthesis, was involved, rather than a simple
disorganization of the subcellular structure (57).
Glickman et al. (58) have shown that inhibition of
protein synthesis reduces fat absorption and pro-
duces a marked and sustained increase in chylomi-
cron size, which can be rationalized as an attempt to
package lipid more efficiently with limited supplies
of apoprotein. Subsequently Glickman and Kirsch
(59), using gel electrophoresis, showed that in inhib-
ited rats there was no significant difference in the
apoprotein derived from chylomicrons of different
sizes, but in animals treated with acetoxycy-
cloheximide the proportion of a major apoprotein,
which appeared to be a high density lipoprotein, was
greatly reduced. Thus the balance of evidence sup-
ports the view that lipoprotein synthesis in the en-
terocyte has a marked influence on the absorption
and transport of long-chain triacylglycerols.

Expansion of Lipid Phosphorus
Pool during Fat Absorption
Assuming that phosphatidylcholine constitutes an

essential component of the chylomicron structure
being present in a definite ratio (3-4% of total lipid) to
the triacylglycerols (13, 14), it is reasonable to expect
that chylomicron synthesis and clearance would be
accompanied by a loss of phosphatidylcholine from
the mucosal cell, which would have to be made up by
synthesis. Since some of the requirement would be
met by acylation of luminal lysophosphatidylcholine
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Table 1. Pool size of phospholipids and triacylglycerols of intestinal
mucosa of fasted and fed ratsa

Phospho- Triacylgly-
lipids, (PL), cerols (TG), (PUL/G)

Samples mg/g proteinb mg/g protein x 100

Fasted
Scrapings 238 ± 24 26.4 ± 3
Crypt cells 196 20 24.1 ± 3
Villus cells 232 ± 23 24.1 ± 3

Fat-fed
Scrapings 334 ± 30 1263 ± 120
Crypt cells 194 ± 20 556 ± 50
Villus cells 324 ± 30 1086 ± 100

Increments
Scrapings 95.3 1236 7.7
Crypt cells - 1.8 532
Villus cells 91.7 1062 8.6

aMale rats weighing 150-200 g received 1.5 ml ofcorn oil plus 50
mg egg lecithin by stomach tube and were sacrificed 2.5 hr later.
The total phospholipid and triacylglycerol pools were compared
to those measured in a control group having access to water only.
Mucosal scrapings, and crypt and villus cells were prepared by
differential scraping digestion of intestinal mucosa with
hyaluronidase (61).
"Means ± S.D. for three determinations.

(60), the synthesis would only be partially reflected
in an increased incorporation of radioactive phos-
phate (involving CDP choline). Provided sufficient
fat remained in the intestinal mucosa during the
synthesis of the chylomicrons there should be an
expected expansion ofthe phosphatidylcholine pool.
An expansion of the membrane phospholipid pool
would also be expected if increased membrane syn-
thesis and turnover was involved as well (48). This
increase in the phospholipid pool could be accom-
panied either by an increased or decreased relative
specific activity of the lipid phosphorus depending
on the time of introduction of the label and the time
course offat absorption. Recent work from our labo-
ratory has tended to support this hypothesis (61).
Table 1 compares the pool sizes of the total phos-

pholipids and of triacylglycerols in the mucosal
scrapings, and in crypt and villus cells from starved
and fed rats. It may be seen that the accumulation of
an excess of 1061.9 mg/g protein of triacylglycerol in
the villus cells is accompanied by a parallel accumu-
lation of 91.7 mg phospholipid/g protein, which cor-
responds to about 8.6% of the triacylglycerol. A
comparable accumulation of phospholipid is seen in
the scrapings (7.7% of the net triglyceride accumula-
tion). In contrast the much lower accumulation of
triacylglycerols in the crypt cells is accompanied by
no discernible accumulation of phospholipid. This
increase in the phospholipid pool of the villus cells
and of the mucosal scrapings is about twice that

anticipated for phosphatidylcholine on the basis of
the increase in the triacylglycerol content. Presum-
ably it also represents other phospholipids (up to
30to) as well as an increase in the amount of mem-
brane phospholipid during fat absorption as already
noted in connection with the puromycin effect seen
in the electron microscope (48).
Table 2 compares the relative specific activities of

the total phospholipids of the scrapings and of crypt
and villus cells of rat intestinal mucosa following a
30-min intravenous infusion of inorganic phos-
phate-[32P]. It is seen that the relative specific radio-
activity of the phospholipids is significantly higher in
both scrapings and in villus cells from the fat-fed
animals, although the overall radioactivity is low.
These changes in the relative specific activity of the
lipid phosphate represent 20-30% higher phos-
pholipid synthesis in the fat absorbing cells when
compared to starving cells.
The results were reassessed in a larger number of

rats 9-11 hr after receiving the inorganic phosphate-
[32P] but having a continuous access to food (61). In
these series of experiments very little triacylglycerol
was accumulated, and there was little increase in the
phospholipid pool size. However, the relative in-
crease in the phospholipid pool was reasonable in
view of the small amount of triacylglycerol accumu-
lated. Under these conditions, the apparent excess
ofthe phospholipid must be attributed to the increase
in the membrane phospholipid of the fat absorbing
cells when compared to the starving cells. Further-
more, the villus cells from fed rats had lower relative
specific activity of the lipid phosphorus pool when
compared to those from fasting rats, while the crypt
cells had about the same relative specific activity of
the lipid phosphorus pool after fat feeding. Surpris-
ingly, the relative specific activity of the mucosal
scrapings after fat feeding was higher than the aver-
age of that of the crypt and villus cells. Since there
was very little triacylglycerol accumulated by the
cells or the scrapings in these experiments it was not
possible to definitely relate the changes in the rela-

Table 2. Relative specific activities of total phospholipids of intesti-
na mucosa of fasted and fed rats 30 min after iljection ofinorganic

phosphate-[32P]a

Relative specific activities x 103b

Treatment Scrapings Crypt cells Villus cells

Fasted 28 2 75 4 64 3
Fat-fed 63 3 110 6 % 5

aAnimals as in Table 1. Intravenous injection of 32P (0.4 mCi/
animal) was made 30 min prior to sacrifice.
Mean + S.D. for three determinations. Relative specific ac-

tivities = (dpm/,g lipid P)/(dpm/,ug nonlipid P).
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tive specific activities of the lipid phosphorus pools
to the accumulation of the triacylglycerols in the
fonn of any chylomicrons. Nevertheless, the lower
relative specific activity of the villus cells may repre-
sent an increased loss of phosphatidylcholine from
the mucosa during the clearance of the
triacylglycerols, as well as an increased turnover of
the membrane phospholipids.
Previous studies, however, have failed to detect

any difference in the phospholipid content or turn-
over between mucosal scrapings of starved and fat-
fed animals (62), and it has been concluded that fat
absorption does not stimulate the rate of phos-
pholipid turnover. It must be pointed out that the
latter investigators were looking for an increase in
phospholipid turnover of a much larger magnitude
which would be sufficient to account for the forma-
tion of glycerophospholipids as intermediates in fat
absorption (63). Also, these workers did not use
isolated cells from the intestine. Perhaps the scrap-
ings were too crude to detect the relatively small
changes.

Summary and Conclusions
A review of past and present studies on the mech-

anism of resynthesis and clearance of dietary fat
from the rat intestinal mucosa allows the following
conclusions.
Under in vivo conditions dietary fat is absorbed

largely via the 2-monoacylglycerol pathway, with
the phosphatidic acid pathway contributing a
minimum of 20%o of the total resynthesis.
In vivo studies have failed to reveal any inhibition

of the phosphatidic acid pathway by 2-monoacylgly-
cerols, in contrast to in vitro studies with intestinal
microsomes and slices.
The 2-monoacylglycerols in vivo appear to be

reacylated about equally via the sn-1,2- and sn-2,3-
diacylglycerol enantiomers, although in cell free
systems, the formation of the sn-1,2-diacylglycerol
enatiomer is markedly favored.
The intestinal mucosa contains several pools of

diacylglycerols which appear to be unequally
utilized in triacylglycerol and glycerophospholipid
biosynthesis. It is not known whether or not this
segregation is based on a physical separation and
differences in fatty acid composition or also on dif-
ferences in stereochemical configuration.
There is a specific requirement for phosphatidyl-

choline biosynthesis in support of large-scale
chylomicron formation and secretion, although
smaller amounts ofchylomicrons may be secreted by
increasing the particle size without expansion of the
phospholipid pool. Likewise, there is also a require-
ment for apopeptide synthesis for the same purpose.

Shortage of either or both leads to impaired
chylomicron formation and secretion.

Thle requirement for phosphatidylcholine biosyn-
thesis during fat absorption is supported by the re-
cent demonstration of an expansion of the mucosal
lipid phosphorus pool and appropriate changes in its
relative specific activity.
Mucosal absorption of dietary fat therefore ap-

pears to be a concerted metabolic event involving the
entire villus cell rather than a shunt characterized by
limited metabolic commitment of the cellular ma-
chinery.
As a result the involvement of fat absorption and

metabolism in the interaction between environmen-
tal agents and the alimentary tract must be expected
to be complex. To date, very little of this interaction
has been documented.

The studies by the senior author and his collaborators were
supported by the Medical Research Council of Canada and the
Ontario Heart Foundation, Toronto, Canada.
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